Assignment 8

Exercise 1

Let a and d be positive real numbers and B a standard Brownian motion.

1) Compute for $\lambda>0$

$$
\left.\mathbb{E}^{\mathbb{P}}\left[\exp \left(-\left|B_{d}\right| \sqrt{2 \lambda}\right)\right) \mathbf{1}_{\left\{B_{d} \leq-a\right\}}\right] .
$$

2) Define $T_{1}:=\inf \left\{t \geq d: B_{t}=0\right\}$. Show that T_{1} is an $\mathbb{F}^{B, \mathbb{P}^{-} \text {-stopping time, and compute for any } \lambda>0}$

$$
\mathbb{E}^{\mathbb{P}}\left[\exp \left(-\lambda T_{1}\right)\right], \text { and } \mathbb{E}^{\mathbb{P}}\left[\exp \left(-\lambda T_{1}\right) \mathbf{1}_{\left\{B_{d} \leq-a\right\}}\right]
$$

Show then that $B_{T_{1}+d}$ is independent of B_{d} and T_{1}.
3) We now define τ_{1} by

$$
\tau_{1}:=\left\{\begin{array}{l}
d, \text { if } B_{d} \leq-a \\
T_{1}+d, \text { if } B_{d}>-a, \text { and } B_{T_{1}+d} \leq-a \\
+\infty, \text { otherwise }
\end{array}\right.
$$

Compute for any $\lambda>0$

$$
\mathbb{E}^{\mathbb{P}}\left[\exp \left(-\lambda \tau_{1}\right)\right]
$$

4) Let now

$$
T_{2}:=\inf \left\{t \geq T_{1}+d: B_{t}=0\right\}
$$

As above we then introduce

$$
\tau_{2}:=\left\{\begin{array}{l}
d, \text { if } B_{d} \leq-a \\
T_{1}+d, \text { if } B_{d}>-a, \text { and } B_{T_{1}+d} \leq-a \\
T_{2}+d, \text { if } B_{d}>-a, B_{T_{1}+d}>-a, \text { and } B_{T_{2}+d} \leq-a \\
+\infty, \text { otherwise }
\end{array}\right.
$$

Show that $B_{T_{2}+d}$ is independent of $\left(B_{T_{1}+d}, B_{d}\right)$ and T_{2}, then compute for any $\lambda>0$

$$
\mathbb{E}\left[\exp \left(-\lambda \tau_{2}\right)\right]
$$

Exercise 2

Let B be a standard one-dimensional Brownian motion $\left(B_{t}\right)_{t \geq 0}$. We define

$$
X_{t}:=\frac{1}{t} \int_{0}^{t} \mathbf{1}_{\left\{B_{s}>0\right\}} \mathrm{d} s, t>0
$$

Our goal is to show that

$$
\mathbb{P}\left[X_{t}<u\right]=\frac{2}{\pi} \operatorname{Arcsin}(\sqrt{u}), 0 \leq u \leq 1, t>0
$$

1) What does X_{t} represent?
2) Show that the law of X_{t} is equal to the law of X_{1}, for any $t>0$.
3) We fix $\lambda>0$ and define for $(t, x) \in] 0,+\infty[\times \mathbb{R}$ the map

$$
v(t, x)=\mathbb{E}^{\mathbb{P}}\left[\exp \left(-\lambda \int_{0}^{t} \mathbf{1}_{\left\{x+B_{s}>0\right\}} \mathrm{d} s\right)\right]
$$

as well as its Laplace transform

$$
g_{\rho}(x):=\int_{0}^{+\infty} v(t, x) \mathrm{e}^{-\rho t} \mathrm{~d} t, \rho>0
$$

Show that

$$
g_{\rho}(0)=\mathbb{E}^{\mathbb{P}}\left[\frac{1}{\rho+\lambda X_{1}}\right]
$$

4) Assuming that all functions appearing are smooth enough, show that v must satisfy

$$
\frac{\partial v}{\partial t}(t, x)=\frac{1}{2} \frac{\partial^{2} v}{\partial x^{2}}(t, x)-\lambda \mathbf{1}_{\{x>0\}} v(t, x)
$$

5) Deduce then that g_{ρ} must satisfy

$$
g_{\rho}^{\prime \prime}(x)=-2+2 \rho g_{\rho}(x)+2 \lambda \mathbf{1}_{x>0} g_{\rho}(x)
$$

6) Solve this ODE on \mathbb{R}, and deduce in particular that

$$
g_{\rho}(0)=\frac{1}{\sqrt{\rho(\lambda+\rho)}} .
$$

7) Deduce that the result stated at the beginning of the exercise holds. You may want to use (and prove!) the following identity

$$
\frac{1}{\sqrt{1+\lambda}}=\frac{1}{\pi} \sum_{n=0}^{+\infty}(-\lambda)^{n} \int_{0}^{1} \frac{x^{n}}{\sqrt{x(1-x)}} \mathrm{d} x
$$

